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The shock wave structure in a one-dimensional lattice �e.g., granular chain of elastic particles� with a power
law dependence of force on displacement between particles �F��n� with viscous dissipation is considered and
compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity
between neighboring particles is included to investigate its influence on the shape of a steady shock. The
critical viscosity coefficient pc, defining the transition from an oscillatory to a monotonic shock profile in
strongly nonlinear systems, is obtained from the long-wave approximation for arbitrary values of the exponent
n. The expression for the critical viscosity is comparable to the value obtained in the numerical analysis of a
discrete system with a Hertzian contact interaction �n=3/2�. The expression for pc in the weakly nonlinear
case converges to the known equation for the critical viscosity. An initial disturbance in a discrete system
approaches a stationary shock profile after traveling a short distance that is comparable to the width of the
leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its
critical value.
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I. INTRODUCTION

It is well known that one-dimensional and ordered two-
and three-dimensional lattices of particles support compres-
sive strongly nonlinear solitary waves for “normal” nonlinear
interaction laws between particles �1�. For example, these
waves exist when the force between particles exhibits a
power-law dependence on displacement �F��n� for n�1
�2–5�. The long wave approximations for power-law interac-
tions have exact solutions for compressive solitary waves in
nondissipative particle lattices. When lattices are statically
compressed they exhibit a dynamic nonlinear behavior that
can be tuned �6� from the strongly to the weakly nonlinear
regime. However, dissipation significantly attenuates com-
pression pulses in many experimental settings �1,6,7� in the
strongly and weakly nonlinear regimes and should be in-
cluded to model real systems.

There have been a number of analytical and numerical
studies that introduce dissipation into the equations of mo-
tion for discrete systems. The behavior of a viscous granular
gas was investigated �8� using a viscous drag term depending
on the velocity of individual particles. Coefficients of resti-
tution were used to investigate inelastic collisions between
two particles �9,10� and viscoelastic interactions were intro-
duced in �11,12�. Attenuation in a one-dimensional lattice is
analyzed in �13,14�. In �15� coupled dashpots representing
viscous dissipation depending on the relative motion be-
tween atoms were introduced for the investigation of steady
shock waves in anharmonic spring-mass systems. The influ-
ence of Stokes drag force, which is a function of particle
velocity, and damping depending on the relative motion of
particles on enveloped solitons in anharmonic discrete lat-
tices was considered in �16�.

Recent experimental and numerical work on pulse propa-
gation in lattices immersed in media with different viscosi-
ties �air, oil, and glycerol� �17� demonstrated that a dissipa-
tive term based on the relative velocities between particles

affect the wave propagation more significantly than Stokes
drag. The mechanism of this phenomenon is related to fluid
being expelled from and returning to the contact area during
dynamic particle interaction corresponding to an increase
and decrease of contact force.

The dissipation process influences the behavior of media
in the transition area within the shock front and determines
the shape of shock profile. For example, in a weakly nonlin-
ear system described by the Korteweg de Vries �KdV� equa-
tion, two qualitatively different shock profiles exist depend-
ing on the value of the viscosity �18�; oscillatory if below the
critical value and monotonic if above. These two profiles
also appear experimentally in strongly nonlinear systems us-
ing geometrically identical lattices of lead and steel particles
under similar loading conditions �1�. The energy dissipation
in the strongly nonlinear lead particle lattice is attributed to
the significant plastic deformation in the vicinity of the par-
ticle contact, which resulted in a monotonic shock profile.

To the best of our knowledge, there is no result for the
critical viscosity that ensures a transition from an oscillatory
to a monotonic shock profile in strongly nonlinear discrete
lattices �e.g., one-dimensional granular chains� or in the cor-
responding long-wave approximations.

This paper studies the effects of a dissipative term on the
type of shock wave profiles �i.e., monotonic or oscillatory� in
a discrete strongly nonlinear system using numerical analy-
sis. A dissipative term based on the relative velocity between
neighboring particles is introduced in the discrete equations
and a critical viscosity is found using the long wave approxi-
mation. The numerical results are compared to the analytical
treatment of the same system in the context of the long-wave
approximation.

II. EQUATIONS OF MOTION FOR A STRONGLY
NONLINEAR DISSIPATIVE DISCRETE LATTICE

In the general case the interaction law in a nondissipative
one dimensional lattice can be described by a function of the
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relative displacements f�ui−ui+1� between neighboring par-
ticles, where ui is the displacement of the ith particle. To
account for viscous dissipation, a term based on the relative
velocities between particles �15–17� is included in the de-
scription

müi = f�ui−1 − ui� − f�ui − ui+1� + ��u̇i−1 − 2u̇i + u̇i+1� , �1�

where m is the mass and � is the viscosity coefficient. A
compressive solitary wave exists for Eq. �1� in the absence of
dissipation and a stationary shock wave exists when dissipa-
tion is included for a “normal” interaction law in the con-
tinuum approximation of this discrete system �1,19�. The
term “normal” refers to an increasing repulsive potential as
the distance between particle centers decreases �f��0� �1�.
In the case of “abnormal” interactions �f��0� solitary and
shock rarefaction waves may exist in the frame of the long
wave approximation. The various properties of these two
types of waves are discussed in �1�. The existence of solitary
waves in a nondissipative discrete lattice for “normal” inter-
actions is proven in �19�.

As a subset of Eq. �1�, particles interacting according to a
power-law potential represent a relatively broad class of in-
teractions where exact solutions of long-wave approxima-
tions can be found for solitary waves �1–5,20�. Numerical
analyses for various values of n agree well with the results
obtained in the long-wave approximation �14,21,22�. The
system of equations using a power law potential including a
viscous dissipation term is

üi = An�ui−1 − ui�n − An�ui − ui+1�n + p�u̇i−1 − 2u̇i + u̇i+1� ,

�2�

where An depends on the geometry of the region of contact
and the material properties. The damping coefficient p is
defined p=� /m, where � is analogous to the constant used
for a dashpot model �15,16�. The classical Hertzian interac-
tion between perfectly elastic spherical particles is a special
case of Eq. �2� when n=3/2. In this case, experimental re-
sults agree qualitatively with the long-wave approximation
and numerical calculations for a one dimensional discrete
particle lattice made from various types of materials
�1,6,7,27,28�: though dissipation was noticeable in all of the
experiments.

III. THE LONG WAVE APPROXIMATION
AND CRITICAL VISCOSITY

The long wave approximation can be derived from the
strongly nonlinear Eq. �2� by assuming that the particle di-
ameter, a=2R, is significantly smaller than the propagating
wavelength L so that ��a /L�1, similar to �1,23�,

utt = − cn
2��− ux�n +

na2

24
„�n − 1��− ux�n−2uxx

2

− 2�− ux�n−1uxxx…�
x

+ pa2utxx, �3�

where cn
2=Anan+1. Terms of higher order are omitted in the

expansions of Eq. �2� as well as the convective derivative,

which is valid for a certain range of wave amplitudes �1�. It
should be noted that the expression for the long-wave sound
speed c0 can be obtained based on the linearization of Eq.
�3�, c0=cn

�n	0
�n−1�/2 �1�, where 	0 is the initial strain due to

static compression. In the case of linear media, n=1, Eq. �3�
is reduced to the well known Boussinesque equation with a
linear dispersive and dissipation term. Stationary solutions of
Eq. �3� without the viscous term have been discussed in �1�
and verified numerically in �14,21,22,24–26� for various val-
ues of n.

We would like to analyze the stationary shock solutions of
Eq. �3� u�x , t�=u�x−Vsht�, where Vsh is the shock wave
speed. This solution satisfies the following, Eq. �4�, where
the strain is defined as 	�x��−ux

Vsh
2

cn
2 	x = �	n +

na2

24
„�n − 1�	n−2	x

2 + 2	n−1	xx…�
x

−
pa2Vsh

cn
2 	xx.

�4�

The variable replacement z=	�n+1�/2 is used to simplify Eq.
�4�, which can be integrated from x to 
 with the boundary
conditions z�+
 �=z0, and zx�x= + 
 �=zxx�x= + 
 �=0,

Vsh
2

cn
2 z2/�n+1� = z2n/�n+1� +

a2n

6�n + 1�
z�n−1�/�n+1�zxx

−
2pa2Vsh

cn
2�n + 1�

zx

z�n−1�/�n+1� + C1. �5�

Equation �5� is simplified further using the variable replace-
ments z= �Vsh /cn��n+1�/�n−1�y and x=a��n /6�n+1�,

y�� − p̄y−2�n−1�/�n+1�y� + y − y−�n−3�/�n+1� + y−�n−1�/�n+1�C2 = 0,

�6�

where p̄ represents the dimensionless viscosity:

p̄ �
2ap

Vsh
� 6

n�n + 1�
. �7�

Equation �6� can be expressed as an equation for the nonlin-
ear oscillator moving in a “potential field” W�y� with a non-
linear “dissipative” term,

y�� = −
�W�y�

�y
+ p̄y−2�n−1�/�n+1�y�, �8�

where the “potential” W�y� is defined

W�y� =
1

2
y2 −

n + 1

4
y4/�n+1� + C3y2/�n+1�. �9�

The relations between constants C3, C2, and C1 are

C3 =
n + 1

2
C2 =

n + 1

2
	 cn

Vsh

2n/�n−1�

C1. �10�

As a representative example of a real system where par-
ticles interact according to Hertz law, the potential W�y� is
plotted in Fig. 1 and five curves are shown for different
values of C3 using n=3/2. Each of the curves �1�–�4� in Fig.
1 has a local minimum at y2 �indicated by arrows� and a local

E. B. HERBOLD AND V. F. NESTERENKO PHYSICAL REVIEW E 75, 021304 �2007�

021304-2



maximum at y1. Stationary solitary waves are not permitted
in the system represented by curve �5� where there are no
local extrema �i.e., there is no potential well�.

The motion of a nondissipative oscillator with a total en-
ergy equal to the local maximum of W�y� at y1 corresponds
to the solitary wave solution �1�. Nondissipative oscillations
corresponding to curve �4� have an initial energy close to the
local maximum of W�y�, which results in a relatively small
range of “displacement” y. This type of behavior is related to
weakly nonlinear waves, in which an initial strain is high
with respect to the dynamic change in strain caused by the
passing wave. Curve �1� corresponds to the strongly nonlin-
ear case of a sonic vacuum where the initial strain is equal to
zero and the ratio of the strain in the wave to the initial strain
is infinite.

The effective potential energy W�y� has local extrema if
C3 is positive and smaller than some critical value �5/27 in
case if n=3/2� for n�1 �1�. The local minimum and maxi-
mum values of the potential in the presence of dissipation
can be interpreted as the initial and final states for the sta-
tionary shock wave. The local maximum of W�y� at y1 is
related to the initial strain in front of the shock wave and the
local minimum at y2 corresponds to the final equilibrium
state. Each pair of y1 and y2 are uniquely defined by the
values of n and C3.

It is possible to express C3 in terms of Vsh and 	0 for a
solitary or shock wave solutions using the condition at the
local maximum at y1, �W�y� /�y�y=y1

=0,

C3 =
n + 1

2
	 cn

Vsh

2/�n−1�

	0�1 − 	 cn

Vsh

2

	0
n−1� . �11�

Weakly and strongly nonlinear regimes can be determined by
the values of Vsh with respect to sound speed c0, which also

determines C3. For example, when Vsh approaches c0 then C3
approaches 5/27 when n=3/2.

The behavior of the strain in a stationary shock profile in
the vicinity of the final state of the shock wave can be ana-
lyzed by linearizing Eq. �6� representing y as sum of two
terms,

y��� = y2 + ���� , �12�

where �����y2. It is assumed that the transition from an
oscillatory to a monotonic shock profile can be identified by
the behavior of solutions in the vicinity of the final state
represented by y2. Substituting Eq. �12� into Eq. �6� results in
the linear equation,

��� − p̄y2
−2�n−1�/�n+1��� +

2

n + 1
�n − y2

−2�n−1�/�n+1��� = 0.

�13�

In the derivation of Eq. �13� C3 was expressed as a func-
tion of y2 based on equation for the derivative of the poten-
tial function being equal zero at y=y2 �W�y� /�y�y=y2

=0,

C3 =
n + 1

2
�y2

2/�n+1� − y2
2n/�n+1�� . �14�

Equation �13� is an equation for a linear oscillator with
dissipation. It has the solution

���� = b1exp�	 p̄

2
y2

−2�n−1�/�n+1� ± g�y2�
�� , �15�

where b1 is a constant and

g�y2� =
1

2
�p̄2y2

−4�n−1�/�n+1� −
8

n + 1
�n − y2

−2�n−1�/�n+1���1/2

.

�16�

Imaginary values of g�y2� correspond to an oscillatory profile
and the transition from an oscillatory to a monotonic shock
profile occurs when g�y2�=0. Thus the critical damping co-
efficient can be derived based on Eq. �16�. It depends on the
properties of the potential function, including the power law
exponent n, and position of the local minimum y2:

p̄c =� 8

n + 1
�ny2

4�n−1�/�n+1� − y2
2�n−1�/�n+1�� . �17�

In the case of a sonic vacuum, the local minimum is at y2
 1 �curve �1� in Fig. 1�, which corresponds to C2=0 in Eq.
�6�. Using y2=1 in Eq. �17� gives the expression for the
dimensionless critical viscosity corresponding to the transi-
tion from an oscillatory to a monotonic shock profile in a
sonic vacuum for arbitrary n,

p̄c,sv = �8�n − 1�/�n + 1� . �18�

Combining Eq. �18� with Eq. �7� results in a dimensional
form of the critical viscosity:

pc,sv = Vsh/a�n�n − 1�/3. �19�

This critical viscosity depends on the amplitude of the shock
wave through its speed Vsh, which is related to the final par-

FIG. 1. �Color online� Plot of the potential W�y� for the strongly
nonlinear wave equation using n=3/2 �Hertzian potential�. Curve
�1�: C3=0; curve �2�: C3=5/81; curve �3�: C3=10/81; curve �4�:
C3=0.18; curve �5�: C3=5/27 �limiting case where there is no local
extrema�. The local maximum of each curve corresponds to the
position of y1, which is the initial state in front of the shock wave.
The arrows indicate the minimum of W�y�, y2, which is the final
state in the shock wave.
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ticle velocity or the strain behind the shock. The critical vis-
cosity can be close to zero for very small amplitudes of the
shock in a sonic vacuum since Vsh is not restricted by the
sound speed.

It is interesting to investigate the validity of Eq. �18�,
derived using Eq. �13� in the vicinity of y2, in the entire y
domain of the fully nonlinear equation Eq. �6�. Figure 2
shows the different types of shock wave propagating in a
sonic vacuum for different values of p̄ by solving Eq. �6�
using Matlab. The critical value p̄c,sv=1.265 was obtained
from Eq. �18� using y2=1 and n=3/2 corresponding to a
Hertzian interaction.

The value of y=0 at point �=0 corresponds to the y1, the
local maximum of W�y� for curve �1� in Fig. 1. In the nu-
merical solution to Eq. �6�, in the strongly nonlinear regime,
an initial displacement of �y=0.001 was given to y to start
motion from the point corresponding to y1=0 ��y is equal to
0.1% of the final y2 value�. The shock profile corresponding
to the critical viscosity p̄= p̄c,sv is shown in curve �1� in Fig.
2. It is apparent that the value of p̄c,sv adequately describes
the transition from the oscillatory to monotonic profile
shown in curves �4�–�1� in Fig. 2.

We conclude that even though the expression for p̄c,sv is
derived in the vicinity of the final state of the shock wave, it
represents the global transition from oscillatory to monotonic
shock profiles in the strongly nonlinear regime correspond-
ing to a sonic vacuum.

Remarkably, the reduction of the viscosity resulting in the
transition from a monotonic to an oscillatory shock front
does not dramatically reduce the shock onset width �Fig. 2�.
The term shock onset width is used here to describe the
distance, in �, from the initial state to the maximum of the
first peak of the shock front. This can be partially explained
because the shock onset width is limited by the half-width of

the solitary wave solution in a nondissipative system as p̄
→0. The equation for the width of a strongly nonlinear soli-
tary wave in a sonic vacuum for particles interacting accord-
ing to a general power law is �1�

Ls = �a/�n − 1��n�n + 1�/6, �20�

where a is the particle diameter. The width of a strongly
nonlinear solitary wave can be expressed in terms of � for
comparison with the shock onset width seen in Fig. 2. Divid-
ing this expression by two gives the nondimensional limit of
shock onset-width corresponding to a very low viscosity,

L̄s/2 = ��n + 1�/�2n − 2� . �21�

Substituting n=3/2 into this expression results in an onset
width of 7.8, which is very close to the width shown in curve
�4� in Fig. 2 for a relatively small dissipation value p̄
=0.25p̄c,sv.

It is important to note that the width of the shock front is
the distance from the initial state, y1, to the steady final state,
y2, which is significantly larger than the onset width for the
oscillatory shock profile. The width of the monotonic shock
wave corresponding to p̄c,sv is approximately 7a, which is
about 3 times greater than the solitary wave half-width in a
nondissipative strongly nonlinear sonic vacuum type system
�see curve �1� in Fig. 2�. In an overdamped system, where
p̄� p̄c,sv, the width of the shock front and onset-width are
identical and increase with increasing viscosity. For an un-
derdamped system, where p̄� p̄c,sv, the shock front width is
again longer than in the critically damped case due to the
oscillatory tail. For example, compare curve �4� in Fig. 2,
where p̄=0.25p̄c,sv to curve �1� in Fig. 2, p̄= p̄c,sv.

It is interesting that a long shock front width that is sig-
nificantly larger than distance between particle centers exists
in two distinct cases corresponding to qualitatively different
paths to the final state. In the case of weak dissipation the
final state is attained through multiple, slightly damped, os-
cillations. In the case of a relatively strong dissipation, where
p� pc, the final state is attained very slowly without oscilla-
tions. As a result the shock front width is minimal in a criti-
cally damped system at p= pc.

The critical viscosity given by Eq. �17� corresponds to the
transition from an oscillatory to a monotonic shock profile in
the general case including both strongly and weakly nonlin-
ear regimes. It is interesting to compare this prediction of the
critical viscosity in a weakly nonlinear case with the behav-
ior of solution of Eq. �6�. Oscillatory and monotonic profiles
of y corresponding to Eq. �6� in the weakly nonlinear poten-
tial W�y� �for values of C3 close to 5/27� were obtained using
Matlab and are shown in Fig. 3. In the numerical solution of
Eq. �6�, a value of C3  49999/270000 was used, which is
slightly smaller than critical value C3=5/27. For this value
of C3, the initial and final state in the shock wave are y1
=0.3605474 and y2=0.3652323. An initial displacement of
0.1% of the difference between the starting and final y values
��y=4.7�10−6� was given to y to start a motion from y1.

In a strongly precompressed system the behavior of the
solution in the vicinity of y2 is expected to closely match the
global behavior of the solution because the change of strain

FIG. 2. �Color online� Oscillatory and monotonic shock waves
in a “sonic vacuum” �C3=0�. Each curve is a plot of the numerical
solution of Eq. �6� for n=3/2 �Hertzian potential� and the corre-
sponding p̄c,sv=1.265. The curves �1�–�4� in the figure show the
solution at different values of p̄. Curve �1�: p̄= p̄c,sv; curve �2�: p̄
=0.75p̄c,sv; curve �3�: p̄=0.5p̄c,sv; curve �4�: p̄=0.25p̄c,sv.
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in the wave is small compared to the initial strain in the
system. The decrease of viscosity from the critical value p̄c,w
�calculated using Eq. �17�� to the smaller values 0.75p̄c,w,
0.5p̄c,w and 0.25p̄c,w corresponds to the transition from the
monotonic profile shown in curve �1� in Fig. 3 to the oscil-
latory shock profiles in curves �2�, �3�, and �4�.

The equation for the critical viscosity in a dissipative sys-
tem that behaves according to the weakly nonlinear KdV
equation �which is a partial case of Eq. �3�� is derived in
�18�. We can relate the general equation for the critical vis-
cosity Eq. �17� with the known result of the partial weakly
nonlinear case using n=3/2 for the Hertzian potential be-
tween particles for future comparison with experiments.
Also, the KdV equation with dissipation can be easily ob-
tained from Eq. �3� to apply results of �18� directly.

It is assumed that the weakly nonlinear system is initially
compressed resulting in initial strain 	0 and that any traveling
wave is a small perturbation: 	=	0+�, where � /	0�1. This
ratio is the second small parameter we need to derive the
weakly nonlinear equation in addition to R /L�1 required
for the long wave approximation, where L is the characteris-
tic wavelength. The resulting wave equation takes the form
of the KdV equation including dissipation when written for a
wave traveling in one direction,

�t − p̂w�xx + c0�x + 	� −
p̂w

2

2c0

�xxx +

�

2c0
��x = 0, �22�

where p̂w�2R2p is the viscosity coefficient for a system that
permits weakly nonlinear waves �thus the subscript w� and
has units of dynamic viscosity and

�0 = 2R	0, c0
2 = 6AR2�0

1/2, � = c0
2R/�0,

c2 = A�2R�5/2, � = c0R2/6. �23�

Note that Eq. �22� contains a second order correction to the
dissipative term. We can neglect this term because pc→0 as
y2 and C3 approach their critical values �see curves �4� and
�5� in Fig. 1�. The equation for critical viscosity for this
weakly nonlinear system based on �18� is

pc,w =
c0

�6R
�Vsh

c0
− 1. �24�

Equation �24� can also be obtained as the limit of the
critical viscosity in the general strongly nonlinear case given
by Eq. �17� as Vsh→c0. For a Hertzian interaction, n=3/2 is
placed into Eq. �17� along with the definition of p̄ from Eq.
�7�,

pc =
Vsh

2�2R
�3

2
y2

4/5 − y2
2/5. �25�

To write this equation in terms of the speed of the shock
wave Vsh and initial sound speed c0 we can use the relation
between y2 and y1 �27�

y2 = �1

2
„1 − y1

2/5 + ��1 − y1
2/5��1 + 3y1

2/5�…�5/2

. �26�

Using the expressions for c0,

c0
2 = 3/2	0

1/2c2, �27�

and for y1 in terms of c0 and Vsh,

y1 = �2/3�5/2	 c0

Vsh

5

, �28�

and substituting Eqs. �26�–�28� into Eq. �25� obtain

pc =
c0

4�2R
�4

3
−

4

3
	 c0

Vsh

2

+ 	 c0

Vsh

−2

+ �1 − 2	 c0

Vsh

2�	 c0

Vsh

−4

+
4

3
	 c0

Vsh

−2

−
4

3
�1/2

.

�29�

For a weakly nonlinear system, Vsh=c0+��� /c0�1�, and
this small parameter can be used to expand Eq. �29�. This
expansion results in the critical viscosity in the weakly non-
linear system,

pc,w =�c0�

6R2 . �30�

Equation �24� is recovered from Eq. �30� with the replace-
ment �=Vsh−c0. Thus Eq. �17� describing the transition
from oscillatory to monotonic shock profiles in a general
strongly nonlinear case is consistent with the known equa-
tion for the critical viscosity in a weakly nonlinear system.

IV. NUMERICAL INVESTIGATION OF THE CRITICAL
VISCOSITY IN A DISCRETE SYSTEM

The numerical analyses of a discrete particle lattice are
presented here for comparison with the results based on the

FIG. 3. �Color online� Oscillatory and monotonic shock waves
in a weakly nonlinear lattice �C3=49999/270000�. In this plot of
the numerical solution of Eq. �6� the calculated p̄c,w value is 0.074
and curves �1�–�4� in the figure show the solution at different values
of p̄. Curve �1� corresponds to p̄= p̄c,w, curve �2� to p̄=0.75p̄c,w,
curve �3� to p̄=0.5p̄c,w, and curve �4� to p̄=0.25p̄c,w.
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long-wave approximation leading to the value of critical vis-
cosity, Eq. �17�. There are differences between applied ana-
lytical approach in the frame of the long wave approximation
and the numerical calculations of discrete particle lattice.
First, the analytical approach assumes a stationary profile
with a constant shock wave speed but does not account for
the transient development of the wave into its steady state.
Also, it is important to compare the critical viscosity value
derived from the long wave approximation to a value char-
acteristic for shock waves in discrete chains because the
width of a weakly dissipative shock is comparable to the size
of the particles; especially for large values of n. These fea-
tures may result in significantly disparate behaviors of the
shock wave solutions of the long wave approximation and
the discrete lattice.

The numerical analyses will test how well Eqs. �17� and
�18� predict the transition from an oscillatory to a monotonic
shock profile in a discrete system even though the expres-
sions for pc rely on the behavior of solution in the vicinity of
the final state of the shock wave. This numerical investiga-
tion will focus on a sonic vacuum type system since the
solution based on the long wave approximation is expected
to be a better fit to the behavior of a discrete system in the
weakly nonlinear regime.

A shock wave is created in the numerical simulation by
prescribing a constant velocity �0 to the first particle of an
initially quiescent lattice at t=0. The discrete displacement
solution is used to find the strains for comparison with the
long-wave approximation. The equation for the strain 	 in a
discrete lattice taken between particles i and i+1 is defined
as

	 = �ui − ui+1�/2R . �31�

To compare numerical results for developing and station-
ary shock waves in a discrete lattice with the stationary so-
lution in the long wave approximation the particle velocity in
the final state in the shock wave is assumed to be equal to the
velocity of the first particle in the numerical calculations. It
should be mentioned that final state of the shock wave in a
sonic vacuum in the long wave approximation corresponds
to the value of y=1 �see Fig. 1� resulting in the following
relations between shock speed Vsh, particle velocity �0 and
strain 	sh in the final state:

Vsh = cn
2/�n+1��0

�n−1�/�n+1� = cn	sh
�n−1�/2. �32�

The plots of the numerical calculations and the curves ob-
tained in the long wave approximation are presented in non-
dimensional coordinates y and �:

y = �cn/�0�	�n+1�/2, �33�

� = −
cn

2/�n+1��0
�n−1�/�n+1�t

2R
�6�n + 1�/n . �34�

Equations �31�–�34� are used to plot the numerical data in
Figs. 4–6.

We compare the numerical solution for oscillatory and
monotonic shock waves in a discrete lattice with the long
wave approximation in case when n=3/2 for spheres inter-

acting with a Hertzian potential. The data in Table I were
selected to resemble a real system similar to those found in
previous experimental work �6,17,28� for the purpose of fu-
ture comparison with experiments. The expression for A in

FIG. 5. �Color online� Comparison of the early development of
a monotonic shock wave in a discrete strongly nonlinear lattice and
stationary solution in the long wave approximation. Curve �1�: The
solid line is a plot of the solution of the long-wave approximation,
y���, for p̄= p̄c,sv. Curve �2�: The circles represent the path of y in a
discrete lattice for the interaction of the fifth and sixth particle from
t=5 �s to t=35 �s. For convenience both curves are plotted from
the moment of arrival of the shock wave at a given point.

FIG. 4. �Color online� An oscillatory shock wave in a strongly
nonlinear lattice close to the impacted end. Curve �1�: The numeri-
cal solution of the long-wave approximation, Eq. �6�, for p̄
=0.1p̄c,sv. Curve �2�: The circles represent the path of y in a discrete
particle lattice for the interaction of the 15th and 16th particle from
t=48.13 �s �far right� to t=102.4 �s from the beginning of impact
�far left� with the same value of viscosity. For convenience, both
curves are plotted from the moment of arrival of the shock wave at
a given point.
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Eq. �2� assumes a homogeneous particle mass and radius
throughout the lattice: A=E�2R�1/2 / �3m�1−�2��, where m
=4/3�R3�0. The values of p in the numerical simulation of a
discrete lattice were p=0.1pc,sv and p= pc,sv; the values of
pc,sv were calculated from the combination of Eq. �19� and
Eq. �32� and the parameters from Table I.

Figure 4 depicts the early development of an oscillatory
shock wave in a discrete lattice in comparison with the re-
sults of long wave approximation using p=0.1pc,sv. Time t is
calculated starting from the moment of arrival of shock wave
at given point of observation. The points comprising curve
�2� in Fig. 4 are the discrete y values between the 15th and
16th particles. Note the progressive phase shift between os-
cillations, slightly larger amplitude of the first peak, and the
smaller amplitudes of the oscillations behind it in compari-
son to the analytical solution shown in curve �1�. Despite
these differences, the qualitative behavior of the oscillatory
shock wave matches well with the long-wave approximation
in this unsteady regime of propagation close to the impacted
end of the lattice.

The early development of a monotonic shock profile at a
distance close to the impacted end in a discrete lattice is
shown in curve �2� in Fig. 5 for the critical viscosity pc,sv
derived from the long wave approximation. Curve �1� in Fig.
5 represents the stationary profile of a shock wave in the long
wave approximation �it is identical to curve �1� in Fig. 2� for
comparison to the results for discrete lattice. The y values for
the contact between fifth and sixth particles are shown from
times t=5 �s to t=35 �s starting from the moment of im-
pact.

In this unsteady state of shock propagation, curve �2� in
Fig. 5 oscillates slightly as it approaches y=1 behind the
shock front and the shock onset width is less than that of
curve �1�. It is interesting that, despite this tiny oscillation,
the qualitative shape of the shock profile closely resembles
the steady state solution for the long-wave approximation.
This shows that the critically damped shock profile in a
strongly nonlinear discrete system approaches a stationary
state after traveling only a few particles after formation.

In Figs. 4 and 5 the unsteady shock profiles formed near
the impacted end were compared to the stationary solution in
long-wave approximation. It is interesting to compare them
at larger distances from the impacted end where shock pro-
files in the discrete lattice should be closer to a shape corre-
sponding to steady state of shock propagation.

The corresponding data for both oscillatory and mono-
tonic profiles in the long wave approximation and in the
discrete lattice at a few distances from entrance are shown in
Fig. 6. Curve �1� in Fig. 6�a� is identical to curve �1� in Fig.

FIG. 6. �Color online� Comparison of �a� oscillatory and �b�
monotonic steady shock waves in a discrete strongly nonlinear lat-
tice and the results of the long wave approximation. Curve �1� is the
stationary solution of the long wave approximation for an oscilla-
tory shock front; curve �2� is a set of discrete points representing the
parameter y related to the strain between particles: �—particle con-
tacts 218–234 at time t�1638 �s; �—particle contacts 454–468
at t�3278 �s; �—particle contacts 685–701 at t�4918 �s;
�—particle contacts 919–934 at t�6557 �s; curve �3� is a station-
ary solution of the long wave approximation for a monotonic shock
front; curve �4� is a set of discrete points representing the parameter
y between particles for comparison with curve �3�: �—particle
contacts 455–470 at t�3278 �s; �—particle contacts 921–937 at
t�6557 �s. For convenience all curves are plotted from the mo-
ment of arrival of the shock wave at a given point.

TABLE I. Parameters used in numerical analysis.

Symbol Units Value

Young’s modulus E �GPa� 193

Poisson’s ratio � 0.3

Density � �kg/m3� 8000

Particle radius R �m� 2.38�10−3

Mass m �kg� 4.52�10−4

Critical viscosity �cr
a �Ns/m� 32.15

Number of particles N 1000

Initial velocity �0 �m/s� 0.5

Time step �t ��s� 0.875

a�cr=mpc.
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4. Curve �4� in Fig. 6�b� closely matches the long-wave ap-
proximation curve �3� for the monotonic shock wave. We
assume that if a profile is not changing qualitatively after
traveling through a few hundred particle contacts, it is steady
enough for the present discussion.

The difference in shock-front widths in curve �2� �Fig. 5�
is indistinguishable when compared to curve �2� in Fig. 6�b�.
This means that the critical value of viscosity pc,sv from Eq.
�19� captures the transition from oscillatory to monotonic
wave profiles in discrete lattice very well on the stationary
stages of shock wave propagation.

V. CONCLUSIONS

The long-wave approximation of a strongly nonlinear sys-
tem with a power law dependence of force on displacement
was extended to include viscous dissipation that depends on
the relative velocities of neighboring particles. From this ap-
proach an equation for a critical viscosity describing the tran-

sition from oscillatory to monotonic shock profiles in a
strongly nonlinear regime was derived. This equation natu-
rally includes the weakly nonlinear case. Numerical calcula-
tions of the discrete system agreed well with the results of
long wave approximation. It should be emphasized that the
initial disturbance in a discrete chain approaches a stationary
shock regime at a distance comparable to the width of the
stationary shock front from the boundary particle. This is
analogous to the case of a nondissipative system where the
initial disturbance forms a single or a train of solitary waves
after traveling a short distance that is comparable to the
width of the leading pulse of a stationary shock front. The
shock onset width was defined and compared with the width
of a solitary wave. The shock front width is minimized when
the viscosity is equal to its critical value.
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